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In 1958 Philip Anderson published a paper suggesting that
certain materials can suffer a sudden phase transition, from
conductor to insulator, under a slight change in the amount
of disorder in the material. At the time, every physicist would
have understood that disorder hinders electron mobility and
thus decreases the material’s conductivity. But until then, no
one had predicted its complete cancellation past a certain
amount of disorder. Even 20 years after his seminal article,
when Anderson received the Nobel Prize in Physics in 1977,
the effect was still far from fully understood. (For a historical
account, see the article by Ad Lagendijk, Bart van Tiggelen,
and Diederik Wiersma on page 24.) Today, questions still re-
main—among them, what is the exact critical value of the dis-
order at the transition? and how do interactions change the
picture? Fortunately, researchers are now in a position to an-
swer some of those questions. One approach is to observe the
behavior of ultracold atoms in disordered optical poten-
tials—the focus of this article.  

Matter waves that go nowhere
Anderson’s initial model starts from the tight-binding model
of an electron in a crystal,1 considered as a periodic lattice of

potential wells, as pictured in figure 1a. The electron can hop
from one site to nearest-neighboring ones by quantum tun-
neling. For large enough tunneling amplitudes, one obtains
as a stationary-state solution of the Schrödinger equation an
extended wavefunction that describes an electron able to
freely propagate through the crystal. That propagation in a
perfect crystal can also be described as a Bloch wave in a con-
duction band.1 If disorder is added to the tight-binding model
by randomly shifting the energies of the various trapping
sites, with a distribution of width W, propagation is hin-
dered, a situation that corresponds to ohmic conduction. 

Anderson’s conjecture, based on a general mathematical
argument, is the existence of a level of disorder beyond which
the conductivity is more than reduced, it is totally cancelled.
The breakdown of conduction is associated with a sudden
change in the electronic wavefunction, which ceases to be ex-
tended and becomes spatially localized with exponentially
decreasing tails. The surprise is that localization happens
even if the electron remains able to tunnel between neighbor
lattice sites: The various quantum amplitudes associated
with all those paths cancel when they are added. 

Indeed, Anderson localization (AL) is, in essence, an inter-
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Figure 1. Hopping elec-
trons or scattered waves. 
(a) If electrons are allowed
to tunnel between neigh-
boring sites of an ordered
lattice, one obtains a freely
propagating wave as the
solution of the Schrödinger
equation. If the regularity of
the lattice is broken by ran-
domly changing the depth
of the potential at each lat-
tice site, the solution may
become localized—that is,
the wavefunction ψ decays
exponentially in space (the
horizontal axis). The decay,
a signature of Anderson lo-
calization, occurs when the
level W of disorder is large enough. (b) When a plane wave (the vertical lines show the wavefronts) tries to propagate in a medium
with many scatterers, the rescattered wavelets interfere in the forward direction and add coherently to the initial wave. If the
amount of scattering is large enough, the forward interference is destructive and the amplitude of the wave decreases exponentially
along the propagation direction—the wave is localized.
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ference phenomenon. And after Anderson’s con-
jecture based on the tight-binding model of hop-
ping electrons, an equivalent model based on
wave physics emerged.2 The basis of that ap-
proach is the equivalence between the running
Bloch wave describing a particle freely propagat-
ing in a conduction band of a perfect crystal and
a matter wave freely propagating in a homoge-
neous nonabsorbing medium.3 Adding disorder
to the latter model can be done by introducing
impurities, from which the matter waves scatter
and propagate diffusively through the crystal.

The wave model of ohmic conduction is
based on the assumption that diffusion is inco-
herent and that one can add the intensities of the
wavelets scattered from impurities. In contrast,
when one adds the amplitudes of the scattered
waves, as should be done according to basic
quantum laws, destructive interference may can-
cel the propagation in the forward direction or in
any other direction (figure 1b). That occurs when
the mean free path ℓ between two scattering
events is smaller than the wavelength λ of the
wave divided by 2π—that is, when the dephasing
between successive scatterings is less than 
about 1 radian. The condition, known as the
Ioffe–Regel criterion, was introduced in the con-
text of AL by Nevill Mott.3 It stresses the existence
of a threshold, or mobility edge, at which the
transition from extended to  localized happens.

Despite its wide acceptance, the exact status
of the Ioffe–Regel criterion is still not completely
clear. First, rigorous derivations are based on the
scaling theory developed by the famous “gang of
four” (Elihu Abrahams, Anderson, Donald Lic-
ciardello, and T. V. Ramakrishnan), which does
not yield the precise value of the ratio ℓ/λ associated with the
transition. Second, the situations in dimensions lower than
three have many intriguing features. For instance, a general
result of scaling theory is that in one dimension all states are
localized, and there is no a priori mobility edge to separate
localized states from extended ones. But as we will see below,
the situation may be more subtle.

Ultracold atoms
Although Anderson was thinking of electrons in his 1958
paper, directly observing AL of electrons turns out to be dif-
ficult. A number of phenomena can mask the single-particle
quantum effects induced by disorder: Electrons repel each
other and are affected by lattice vibrations, a kind of disorder
that is not static and cannot produce AL. Moreover, directly
observing electron wavefunctions in solids is quite challeng-
ing; most evidence of AL is indirect and based on conductiv-
ity measurements. 

In contrast, ultracold atoms, which are also genuine
quantum particles, allow one to address the core of the phe-
nomenon that Anderson predicted, since interactions can be
reduced to a negligible level. Moreover, single-atom matter
waves can be directly visualized by absorption or fluores-
cence imaging of the atomic density of a dilute Bose–Einstein
condensate (BEC), as outlined in the box above. Indeed, such
an ideal quantum gas is nothing but many independent
atoms in the same one-atom wavefunction. 

One can then experimentally monitor the behavior of an
atomic wavefunction placed in a disordered potential.4 That’s
possible with an appropriately designed light pattern, since
the atoms can be submitted to an optical potential directly

proportional to laser light intensity for a laser wavelength far
enough from a resonance. That potential is due to the cou-
pling of the laser’s electric field with the induced atomic elec-
tric dipole, and it results in an interaction energy propor-
tional to the squared electric field, averaged over time.5

To apply a disordered light intensity to the atoms, one
could image a computer-generated disordered mask.6 In-
stead, we directly generate the disordered optical potential
by the interference of suitably arranged laser waves. Indeed,
we have reproduced two different situations that correspond
to the two different approaches presented in figure 1. One of
us (Aspect) and colleagues at the Institut d’Optique in
Palaiseau, France, generated a laser speckle pattern, produc-
ing a perfectly controlled disordered potential for ultracold
atoms.7,8 The other (Inguscio) and colleagues at LENS (Euro-
pean Laboratory for Nonlinear Spectroscopy) in Florence,
Italy, created “certain random lattices” by adding one optical
lattice to another having a noncommensurate period.9,10 In
both cases, ultracold atoms from a noninteracting BEC were
then loaded in the optical potential to directly observe AL.

Laser speckle
To experience laser speckle, one needs only to look at the
bright and dark spots of light scattered when a helium–neon
laser shines on a rough surface. A similar, random light-
 intensity pattern is formed for the atoms by passing a laser
beam through a ground-glass diffusing plate. Each point of
the speckle pattern receives many wavelets issued from dif-
ferent points of the plate; the wavelets’ interference gives rise
to the pattern. Laser speckle is a well-characterized random
process.11 The light-intensity distribution in the speckle
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Imaging a single-atom wavefunction with a 
Bose–Einstein condensate
A noninteracting Bose–Einstein condensate is composed of many atoms
described by the same wavefunction. When a resonant laser beam is
passed through such a cloud trapped in a waveguide, the absorption is
proportional to the atomic density—that is, the squared modulus of the
wavefunction integrated along the line of sight. The fluorescent light scat-
tered by the atoms also yields a faithful image of the atomic density.
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 pattern is a decaying exponential, from which we can esti-
mate the statistics of peak heights. The autocorrelation func-
tion of the intensity pattern, which characterizes the speckle
grains’ size and shape, is controlled by the shape of the illu-
minated surface on the scattering plate.

In the Institut d’Optique experiment, the typical size of
a grain along the z-axis can be as small as a micron; the trans-
verse size is 50 times as large.7 The atoms are guided along
the z direction by a strong and narrow laser beam, which acts
as a matter waveguide with a typical diameter of only a few
microns. The atoms are thus transversely confined but they
can freely move along the z direction. When the laser speckle
pattern is applied, the guided atoms experience a transversely
invariant but longitudinally disordered potential that affects

their motion along the z direction. Thus we have a situation
allowing us to study one-dimensional AL.

What’s the point of studying 1D AL? According to scal-
ing theory, whatever the (nontrivial) potential, for each en-
ergy E of a particle of mass M there exists a solution of the
Schrödinger equation that describes a localized state. How-
ever, when we considered the behavior of ultracold atoms
placed in a 1D optical speckle, we found unexpected proper-
ties of 1D AL,8,12 as we now explain.

Many theoretical studies of AL of waves are based on a
model of scattering impurities described as randomly posi-
tioned Dirac peaks—infinitely high and narrow potentials.
But a laser speckle potential V(z), as drawn in figure 2, is
made of randomly positioned peaks of finite height and finite
width—a very different situation. The peak-height distribu-
tion is a decaying exponential for one thing, which means
that it is exponentially improbable to find peaks with a height
many times the average value of the potential and that in a
finite sample the potential has a maximum value, Vmax. More-
over, the random potential has no spatial variation more
rapid than the typical size σs of a speckle grain. The two fea-
tures entail dramatic consequences.

Consider the first feature. In a sample of finite size, no
speckle peak has a height greater than some maximum value
Vmax (figure 2a). We can then distinguish two regimes. If we
take a particle whose energy is significantly below Vmax, we’re
likely to find two peaks larger than the particle energy and
thus a trivially localized state. That’s the equivalent of classi-
cally trapping a particle between two potential barriers.13 But
what happens if the particle has an energy larger than Vmax
(figure 2b)? A classical particle would propagate from one
end of the sample to the other without being blocked. A nu-
merical solution of the Schrödinger equation in such weak
disorder shows that the wavefunction may be exponentially
localized for well-chosen parameters. One can interpret that
localization’s origin in the interference between the many
wavelets scattered from the speckle potential. 

To better understand the localization, think of the disor-
dered potential as the superposition of many Fourier compo-
nents, and think of the atom as a matter wave interacting sep-
arately with each of those components. If there is a
non vanishing component at spatial frequency 2k, the atom
with momentum p = ħk is Bragg reflected (figure 2c). Further-
more, in a speckle potential no Fourier component with a spa-
tial frequency larger than 2/σs exists. So, according to this sim-
ple reasoning, there is a cutoff value kco = 1/σs such that a matter
wave with a momentum larger than pco = ħkco will not be local-
ized. We thus have an effective mobility edge, and atoms in a
1D speckle potential are expected to have a behavior akin to AL. 

Watching the wavefunction
Reaching the regime in which we expect to see AL of ultra-
cold atoms in a 1D speckle disorder demands apparently con-
tradictory conditions. On the one hand, the energy of atoms
must be larger than the height of the largest speckle peak in
the sample to avoid classical trapping. On the other hand, the
energy must be lower than the energy pco

2 /2M, which corre-
sponds to the effective mobility edge. Those two conditions
are compatible if the speckle’s grain size is small enough. And
thanks to wide-aperture optics, it’s on the order of the laser’s
wavelength.

It’s then possible, by releasing a BEC in a 1D optical po-
tential, to follow what happens to an ensemble of noninter-
acting atoms, all in the same single-atom wavefunction, with
momenta smaller than pco—below the effective mobility
edge—but large enough to avoid classical trapping. The evo-
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Figure 2. Localization of a particle in a speckle potential.
(a) When the particle’s energy E (orange) is smaller than the
highest peaks Vmax of the potential (red), localization results
from trapping between the two peaks and can be under-
stood in classical terms. (b) If the energy is larger than the
highest peak, solving the Schrödinger equation one can
find an exponentially localized wavefunction (the purple
 envelope), which results from the addition of many
wavelets scattered on the peaks, as suggested by the
 arrows. This quantum localization phenomenon is akin to
Anderson localization. (c) In a periodic potential of spatial
frequency 2k, a particle with momentum p = ħk cannot
propagate because it is Bragg reflected, the result of many
wavelets scattered from the periodic structure. Localization
in panel b can thus be interpreted as Bragg reflection of
each momentum component of the particle by the corre-
sponding spatial frequency component of the disordered
potential.



www.physicstoday.org August 2009    Physics Today 33

lution of the atomic wavefunction shows a striking behavior,
as plotted in figure 3. After an initial expansion, the atomic
wavepacket stops expanding and its wings decay exponen-
tially. That is in stark contrast to the usual parabolic profile
that never stops expanding, observed in the absence of dis-
order. We varied the intensity of the laser-induced speckle
and checked that the localization length, or decay constant of
the exponential profile, agrees with the prediction of the sim-
plest theoretical approach sketched above, based on the Born
approximation.

What happens beyond the effective mobility edge, when
the wavefunction describing the expanding atoms has a mo-
mentum distribution with components beyond pco? After
some time only momentum components below pco remain,
and the result is a localized wavepacket. That wavepacket is
localized with an algebraic rather than exponential profile,
however.8

Actually, a more elaborate theoretical treatment based
on an expansion beyond the Born approximation shows that
some localization is still expected beyond the effective mobil-
ity edge,12 but with a localization length orders of magnitude
larger than our sample size. So although the general theorem
that “there is always localization in one dimension” is not vi-
olated, strictly speaking, there is indeed in our situation an
effective mobility edge—or more precisely, a crossover be-
tween two regimes.

The bichromatic lattice
At LENS we loaded the nearly noninteracting atoms into an
artificial 1D “crystal of light” composed of equally spaced
nodes of a laser standing wave. When the intensity of the op-
tical lattice is strong enough, the system experimentally sim-
ulates the tight-binding model considered by Anderson in
1958. Atoms are trapped in the optical lattice sites (akin to
electrons bound to a periodic arrangement of ions in a crys-
tal) but can still hop from one site to a neighboring one with
a tunneling energy J.

In the absence of disorder, the atoms can be described in
terms of Bloch waves, quantum mechanical solutions for the

motion of a particle in a periodic potential, and their energy
spectrum shows the presence of allowed and forbidden
bands. That band structure has been observed in a number
of experiments in which ultracold atoms have been used to
simulate the physics of electrons in ideal crystals. By adding
disorder to the optical lattice, one can explore the transition
from extended Bloch waves to exponentially localized states. 

Figure 4a illustrates the experiment. A second optical lat-
tice with different site spacing is added to the first. Superim-
posing the two periodic waves creates a potential without
any periodicity, provided that the two wavelengths are not
commensurate—that is, if their ratio is an irrational number.
That condition breaks the discrete translational invariance of
the main lattice, and the resulting lattice sites are energy-
shifted from each another by quasi-random potential offsets. 

The optical lattice introducing disorder is much weaker
than the main lattice creating the tight-binding configuration.
The weak lattice may thus be used to affect only the ampli-
tude W of the energy offsets; the probability of hopping from
one site to a nearest neighbor is basically constant across the
lattice and is controlled by the height of the main lattice only.
The amplitudes of the two lattices can thus be used to inde-
pendently adjust both of the system’s relevant energy scales.

This method for producing short-range inhomogeneities
in the lattice has allowed us to explore interesting features of
AL. In addition to simplicity, the method has two remarkable
features: the possibility to continuously sweep between peri-
odic and disordered systems by changing the degree of “ir-
rationality” in the two lattice constants, and the existence of
a metal–insulator transition in one dimension at a precise
value of the ratio between the strength of disorder W and the
tunneling energy J, akin to what happens in the Anderson
model in higher dimensions.

Anderson localization in 1D bichromatic lattices is a
well-known problem. Its theoretical treatment dates back 30
years ago with the work of Serge Aubry and Gilles André,
who showed that a tight-binding model with a quasi-periodic
disorder exhibits a phase transition when W is larger than 2J.
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Figure 3. Anderson localization of 
ultracold atoms. The atoms are held by 
a matter waveguide that confines them
transversely to the z-axis, but lets them
travel freely along z. A laser beam passing
through a thin aperture (elongated in the
z direction) in a diffusive plate creates a
disordered intensity pattern that varies
rapidly along z and smoothly perpendicu-
lar to it. When a small Bose–Einstein con-
densate, initially confined along z, is 
released in the disordered potential, its
expansion stops after about 0.5 s, after
which a stationary density profile with 
exponentially decaying wings emerges.
The semilog plots of the profiles at times
0.8 s, 1 s, and 2 s confirm the localization. 
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Interactions among atoms 
In a cold dilute atomic gas, atoms predominantly interact
with each other through short-range van der Waals forces
that can be described in terms of elastic s-wave collisions.
Control over those collisions can be an interesting tool to in-
vestigate localization phenomena. In its original sense, AL is
indeed a single-particle phenomenon, which demands the
lack of interactions between the particles; repulsive interac-
tions between the atoms can hamper localization. 

The potassium-39 BEC is among those for which the
strength of the collisions between the ultra-
cold atoms can be conveniently tuned by
using a static magnetic field.14 The phenom-
enon, known as a Feshbach resonance, has
led to many striking advances in cold
atomic physics (see Daniel Kleppner’s Ref-
erence Frame in PHYSICS TODAY, August
2004, page 12). Potassium-39 has a conven-
ient resonance of that kind, which has been
used to bring the strength of collisions be-
tween the BEC atoms to essentially zero.
One can then look for localization induced
entirely by disorder, with an ensemble of
hundreds of thousands of noninteracting
particles all occupying the same quantum
state. It was possible to somewhat re-create
the physical situation that Anderson consid-
ered in his article: putting one particle in a
lattice site (or more precisely, 105 clones of
the same particle initially occupying few
sites) and studying the evolution in time.
Figure 4b shows evidence of reduced ex-
pansion and exponential localization above

a certain amount of disorder. The transition to complete
freezing of the atomic motion occurs at a critical value of
W/J ≈ 1, no matter what tunneling time is used in the exper-
iment, as predicted by Aubry and André.15

Observations at LENS have not been limited to trans-
port phenomena. The localization transition was also stud-
ied by directly imaging the momentum distribution of the
atoms as they passed from extended to localized states. If the
optical lattices are suddenly switched off, the BEC wave-
function starts evolving in free space, and after a long
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Figure 5. Imaging the phase transition in momentum space. When the atomic
wavefunction is extended all over the bichromatic lattice, narrow peaks are
recorded in the momentum distribution. When the atomic wavefunction is local-
ized, a broad momentum spread is observed, as expected from the uncertainty
principle. The false-color images in the bottom row are experimental maps of the
momentum distribution recorded after a time-of-flight expansion in free space.
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Figure 4. A bichromatic lattice simulates solid-state model. Loaded in a laser standing wave, an ultracold atom (blue) experiences a
periodic potential. (a) The tunneling energy J can be controlled by changing the intensity of the main standing wave. A second, weaker
optical lattice with an incommensurate spacing breaks the translational invariance and scrambles the site energies, as in the original
solid-state model introduced by Philip Anderson. (b) Time-resolved images of almost noninteracting potassium-39 atoms. The atoms
are first loaded into a few central sites of the bichromatic lattice and then observed diffusing into that nonperiodic structure. An in-
crease in disorder leads to a decrease in diffusion and eventually its absence when the amount of disorder W becomes on the order of J.
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enough time, its squared modulus provides a map of the mo-
mentum distribution. A localized state should lead to a
broad momentum distribution; an extended state is expected
to yield a narrow distribution, as intuitively expected from
the uncertainty relation. The measurement of the momen-
tum distribution yields a quantitative description of the tran-
sition (see figure 5). 

Toward quantum simulators
Even in cases as simple as 1D disordered potentials and non-
interacting atoms, experimental studies have stimulated new
theoretical approaches and led to unexpected findings such
as the existence of an effective mobility edge in a speckle po-
tential, which differs from the well-known case of a symmet-
ric Gaussian-distributed disorder. When experimentalists go
to higher dimensions, add interactions between the atoms,
and can choose between fermion and boson atoms, they will
be able to address a whole host of fascinating theoretical
questions,16 most of them bearing on many-body problems
that raise formidable challenges to theorists. 

A better understanding of the most general behavior of
quantum particles in disordered potentials is important for
applications as well.  For instance, the interacting electrons
in amorphous silicon used for photovoltaic cells are subject
to a disordered potential. When the field matures enough
that ultracold atom experiments yield quantitative results on
such systems, then one can claim to have realized a quantum
simulator, a device able to calculate more efficiently than
available numerical techniques.17

Far from exhausting the subject, the recent experiments
outlined here and elsewhere18 prove the potential of ultracold
atoms as a wonderful playground in which to study a prob-
lem that Anderson himself once thought out of reach. As he
stated in his Nobel lecture,

[A] reason why I felt discouraged in the early
days was that I couldn’t fathom how to reinsert
interactions, and was afraid they, too, would de-
localize. The realization that, of course, the Mott
insulator localizes without randomness, because
of interactions, was my liberation on this: one can
see easily that the Mott and Anderson effects
supplement, not destroy, each other. . . . The
present excitement of the field for me is that I feel
a theory of localization with interactions is begin-
ning to appear. . . .

Thirty years later, such a theory is still wanting, but quantum
simulators may tell us how nature behaves and provide the-
orists with clues about how to proceed.

The results reported here have been obtained by teams of theorists and
experimentalists at Institut d’Optique (Juliette Billy, Vincent Josse,
Zhanchun Zuo, Alain Bernard, Ben Hambrecht, Pierre Lugan, David
Clément, Laurent Sanchez-Palencia, and Philippe Bouyer) and at the
European Laboratory for Nonlinear Spectroscopy (Giacomo Roati,
Chiara D’Errico, Leonardo Fallani, Marco Fattori, Chiara Fort, Mat-
teo Zaccanti, Giovanni Modugno, and Michele Modugno). We
acknowledge many fruitful discussions with Thierry Giamarchi,
Maciej Lewenstein, Gora Shlyapnikov, Boris Altshuler, and others
from whom we have learned a lot. After completing this manuscript,
we were informed via private communication of similar results re -
cently obtained in Randall Hulet’s group at Rice University.
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