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The coefBcient of viscosity is therefore the zero-6eld
value t)(0), with Stg') replacing the former SQ'):

t)(H) = t) (0)Ll+4(o,'r') '. (8.7)

The magnetic field suppresses the viscosity by fore-
shortening the mean free path in the direction of trans-
port. Apart from differences in the magnitude of r, the
term 4a&.sr' in (8.7) replaces cv,sr' in the analogous result
for the conduction problem. This is owing to charge
transport being reversed by turning through 180' while
transverse momentum transport is reversed by turning
through 90', or in one-half the time. The assumption of

a time of relaxation limits the validity of (8.7) to T)&0.
However, as shown by Sondheimer and Wilson for the
electrical conductivity, " such a formula is probably
more widely applicable than its derivation would

suggest.
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This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity
band. "These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION

A NUMBER of physical phenomena seem to involve
quantum-mechanical motion, without any par-

ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion";
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-
nomena is randomness: random spacings of impurities,
random interactions with the "atmosphere" of other
impurities, random arrangements of electronic or
nuclear spins, etc.

Our eventual purpose in this work will be to lay the
foundation for a quantum-mechanical theory of trans-
port problems of this type. Therefore, we must start
with simple theoretical models rather than with the
complicated experimental situations on spin diffusion
or impurity conduction. In this paper, in fact, we
attempt only to construct, for such a system, the
simplest model we can think of which still has some
expectation of representing a real physical situation

' N. Bloembergen, Physica 15, 386 (1949).' A. M. Portis, Phys. Rev. 104, 584 {1956).

reasonably well, and to prove a theorem about the
model. The theorem is that at suKciently low densities,
transport does not take place; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
theorem fails. An additional criterion is that the forces
be of suKciently short range —actually, falling off as
r —+ ~ faster than 1/r' —and we derive a rough estimate
of the rate of transport in the Vcr 1/r' case.

Such a theorem is of interest for a number of reasons:
first, because it may apply directly to spin diffusion

among donor electrons in Si, a situation in which I'"cher'

has shown experimentally that spin diffusion is neg-
ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of freedom, having no obvious

oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
if it exists, must start. In particular, it re-emphasizes
the caution with which we must treat ideas such as
"the thermodynamic system of spin interactions" when

there is no obvious contact with a real external heat
bath.

The simplified theoretical model we use is meant to
represent reasonably well one kind of experimental
situation: namely, spin diffusion under conditions of

' G. Feher (private communication).
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"inhomogeneous broadening. '" Ke assume that we
have sites j distributed in some way, regularly or
randomly, in three-dimensional space; the array of
sites we call the "lattice." We then assume we have
entities occupying these sites. They may be spins or
electrons or perhaps other particles, but let us call them
spins here for brevity. If a spin occupies site j it has
energy E; which (and this is vital) is a stochastic
variable distributed over a band of energies completely
randomly, with a probability distribution I' (E)dE
which can be characterized by a width 8'. Finally, we
assume that between the sites we have an interaction
matrix element V,~(r,,), which transfers the spins from
one site to the next. V;& may or may not itself be a
stochastic variable with a probability distribution. If
one thinks of the mobile entities as up or down electron
spins which can occupy various impurity sites, such as
color or donor centers, in a crystal, then the random
energies E, are the hyperfine interactions with the
surrounding nuclei —Si" for the donors, alkali and
halide nuclei for color centers —and P(E) is the line-

shape function. In this example, V;~ is that part of the
interaction which allows an up spin on atom j to Rip
down while a down spin on k Qips up, and the simple
process we study is the motion of a single "up" spin
among "down" spins.

The "impurity-band" example would again make the
sites donors or acceptors, but the It s would be energy
fluctuations of the donor ground state caused perhaps
by Coulomb interactions with randomly placed charged
centers; the moving entity would be a single ionized
donor. We would have to assume the states of the
different donors to be orthogonal, which is no restriction
if V is arbitrary. More generally, the situation described

by our theorem probably holds in the low-concentration
limit and the low-energy tail of almost any model for
an impurity band.

One important feature which is missing from our
simple model is contact with any external thermal
reservoir. When the present theorem holds, some such
contact will actually control the transport processes.
Our purpose is only to show that the model in itself
provides no such reservoir an.d permits no transport,
in spite of its large size and random character; study
of the real relaxation and transport processes must come
later.

Our basic technique is to place a single "spin" on

site e at an initial time t= 0, and to study the behavior
of the wave function thereafter as a function of time.
Our fundamental theorem may be restated as: if V(r;&)
falls off at large distances faster than 1/rs, and if the
average value of V is less than a certain critical V, of
the order of magnitude of 8'; then there is actually no

transport at all, in the sense that even as t —& 00 the
amplitude of the wave function around site n falls off

' A. M. Portis, Phys. Rev. 91, &0't& (&9&3).

rapidly with distance, the amplitude on site e itself
remaining finite.

One can understand this as being caused by the
failure of the energies of neighboring sites to match
suKciently well for V;& to cause real transport. Instead,
it causes virtual transitions which spread the state,
initially localized at site n, over a larger region of the
lattice, without destroying its localized character.
More distant sites are not important because the
probability of 6nding one with the right energy in-
creases much more slowly with distance than the
interaction decreases.

This theorem leaves two regions of failure (and
therefore transport) to be investigated, namely,
Ver 1/r', as in spin diffusion by dipolar interactions,
and V 8", or the high-concentration limit. In both
cases, the methods used to prove the fundamental
"nontransport" theorem will probably allow us to
outline an approach to the transport problem. In the
1/rs case, we show that transport may be much slower
than the estimates of reference 2 would predict. In the
case V~8', we show that transport Anally occurs not
by single real jumps from one site to another but by the
multiplicity of very long paths involving multiple
virtual jumps from site to site.

II. SUMMARY OF THE REASONING

Since the mathematical development is fairly com-
plicated and involves lengthy consideration of each of
a number of points, we should like to summarize the
reasoning rather fully in this section, leaving the proofs
and details to later sections. First, then, let us set up
the simple model which we study. The equation for
the time-dependence of the probability amplitude a,
that a particle is on the site j is:

ia; =E,a,+ P V; sas.
kQj

Here we measure energies in frequency units, so we can
set 5= 1. Equation (1) simply restates the assumptions
about the model made in the Introduction.

We study the Laplace transform of the equation
(1):let

f;(s)= e—"a (t)dt,
"0

and then

iTsf;(s) a;(0))=E;f,+ —Z V;,f,

The variable s must be studied as an arbitrary complex
variable with positive or zero real part.

The transport problem which interests us is: suppose
we know the probability distribution ~a;(0) ~' at time
t=0, and that it is appreciable only in a certain range
of frequency E; or space r;. Then how fast, '"'. if at all,
does this probabi1ity distribution diffuse away from
this region P
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The simplest question we can ask is to assume
ao(0) =1 for a particular atom j=0 and inquire how
a, varies with time, or f;(s) with s. In particular, for
very small real part of s we are studying the behavior
as t ~ 0&; for instance, Um sf; (s) is in fact (a;(~))Aq.

Equation (3) can be written

1
f(s)=. +Z. V f(s)

zs —E; ~&i zs —E;

In one approach to ordinary transport theory' this
equation is solved by iteration, in which the equations
(4) not involving fo(s) are solved for f; (s) in terms of
0(s):

f~(s) = . V~-ofo(s)
zs —8'

1 1
+ P V'& Viofo(s)+ ' '

~ (~)
zs —Ez zs —Ey

Then the zeroth equation becomes

f,(s) =
zs —E0 & zs —Ep

&' Vao
Vo&, )

&is—Ei,

1 1
+Z V. .

— «.+ " If.() (6)
& zs —Ep zs —E)

Let us call the quantity

(Voi)' VOA:~kl ~l0
+ Z . . +" = V.(0) (7)

~ is E&, &, & (is Ei,)(i—s —E&)—
In many cases the erst term suSces. Studying this
first term, we see that it can be written

( E&, is—
V (0)= 2 (Vo~)'I

& s'+E,' s'+EP)

z=———zSE (9)

Of course, if the first of these terms, the usual transition
probability, is 6nite the second is indeterminate. VVe

include both in order to see what happens if the first
term does vanish.

' See, for example, %. Kohn and J. M. Luttinger, Phys. Rev.
. 108, 590 (i957).

In the limit as s ~ 0, the erst part of this is obviously
just the second-order perturbation —hE(') of the
energy. The second part may be written

(Vo&)'
lim(V. ) = i P (Voi,)'—8(Ei,)—iss~ k k, E'isy-"0 Ey2

Now the equation for fo(s) is

i 1 ) i
fo(s)= + (

-AE&2i ——isK (fo(s).
is—Eo is Eo—& r )

The solution for fo is

is (1+K)+(i/r) (E—o—d E&@)
(10)

If r is finite, one gets the usual result of perturbation
theory:

fo(s) =
s+ (1/r) +i (Ep —DE&2~)

(10A)

which represents a state of perturbed energy Ep—DE"&

decaying at a rate e '~'. If, on the other hand, ~ is
infinite LIm(V, ) —&0 as s~Oj, then the constant K
enters and the amplitude is

fo(s) =
s(1+K)+i(EO—hE&'&)

(103)

This is a state of the same perturbed energy which
does not decay, but has a finite amplitude ao (i +~)-
reduced from unity by the ratio 1/(1+K). K is then
simply a measure of how much this state has spread
to the neighbors by virtual transitions, and has nothing
to do with real transport.

Our technique, then, will be to study the behavior
of the quantity V, (s) defined in (7) by an infinite
series, just as in the usual transport theory. However,
the quantities entering into (7) are completely di8erent
in character because of the fact that we have chosen
to start with localized states of random energies E,.
In the usual case, there are an infinite number of states
j connected to any state 0 by in6nitesimal matrix
elements Vp;, so that within any small range of energies
there will be many possible energy-conserving transi-
tions, no one of which takes place with particularly
large probability. In such a case the first term of (9)
is a meaningful limit of a certain integral. Here, only
a few Vp, "s are large, and the energies they lead to are
stochastically distributed, so that whether or not
energy can be conserved is a probability question.

We find that the quantity V, (s) must be studied as
a probability variable: that is, we pick a starting atom
0 and an arbitrary energy E Limaginary part of s;
Re(s) -+Oj and study the probability distribution of
V,. Our study then resolves itself into three parts:
First, we study the first term (g); second, we discuss the
convergence of the series of higher order perturbations.
Both of these questions we can resolve in the sense
that there is a region in which, with probability unity,
Im(V, ) -+ 0 as Re(s) ~ 0 and the series is convergent.
These two parts we shall discuss here brieQy, and
expand upon in Secs. III and IV. Finally, we must
decide whether this kind of convergence in a probability
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sense is meaningful, and in particular whether the
choice of an arbitrary energy is correct. Since this seems
reasonable from the start, we shall not go into it further
here, but reserve the discussion for Sec.V. We And there
that this convergence means that the states are local-
ized, but that it is not easy to assign a correspondence
between the perturbed and unperturbed states.

I et us, then, go ahead with the erst two questions.
The important quantity for the 6rst is

Let

Im(V, ) = —s P-
»'+~s'

I
Vosj' —=X(s).

S +Es

We note that X also represents the quantity

If (s) I'
X(s)= P

i&p p s

in first order, as is clear from (5). This points up the
interpretation that as s —+ 0 a 6nite X means no real
transport.

Using the Holtsmark-Marko6' method, in the next
section we calculate the probability distribution of this
sum X, and find that if V (r)~1jr'+', where e) 0, then
X(0) has a distribution law with a perfectly finite most
probable value, while the distribution falls off as 1/X&
for large values of X. This latter fact shows, as can also
be verified directly, that the mean value of X is in-
6nite. Clearly this is merely the result of an infinitesimal
fraction of atoms having a very large value. It can be
shown that even these few large values are illusory,
and that by suitably redefining the localized states in
accordance with multiple-scattering theory~ the proba-
bility of such divergences is greatly reduced.

In reference 2 the transition probability is caIculated
by taking the mean of (11) over all possible starting
atoms. The resulting 6nite transition probability is
therefore meaningless, as discussed above.

The case of V(r)=A/r', or normal dipolar spin
diffusion, is a special one. In this case X(0) ~ eo for
all atoms, but the divergence is so extremely weak that
V, (0) is finite. In fact, the distribution of X(s) has the
same form, but the most probable value is roughly

distribution of the E;. This most probable value
diverges as the square of lns when s-+ 0.

This case leads to a transport theory with decays
slower than exponential. Since the divergence of (12)
is caused by large values of r, single, rather long, jumps
have an important eGect on the transport process. The
existence of this transport process for V 1/rs provides
a counter-example for those who may think the present
theorem is self-evident for small enough V.

One may roughly estimate transport times by noting
that, by the definining relationship (2), that value of
s for which sf(s) is of order unity is something like the
inverse of a time of decay due to spin diffusion. Equa-
tion (12) shows that this time increases exponentially
with W/nA for large values —for example, for Si donors
at 10" concentration we compute a rate of exp( —10')
sec '.

On the other hand, for V 1/r'+' (or exponential, as
it often is), the first term of perturbation theory leads
to a vanishing rate of transport independent of V or W.
Thus, if transport is to appear at all it must come in
higher terms, and in fact it is easy to convince oneself
that it can come only by a divergence of the whole
series for V„. Therefore it is of great importance to our
theory to learn how to handle the sums of products

V.(0)= Q Vo,
zs —E; zs —EI,

X ~A:i
is—E)

~ . Vs, (13)

which represent the possibility of successive virtual
transitions until, at possibly some very great distance
from site 0, a real, phase-destroying process can occur.

Our method for this problem, set forth in Sec. IV,
involves both the idea of calculating a probability
distribution rather than a mean for these terms, and
also a modidcation of the multiple-scattering methods of
Watson' in order to eliminate certain troublesome
repeated terms. . We must do this elimination erst.

Certain terms in (13) are apparently very large
because of the fact that there is no prohibition on
repeated indices. Suppose, for instance, that V;1, is
particularly large and that both is—E; and is—EI, are
particularly small so that

yz2+2- )W~ '
E2s) ..

(12)
V~a

zs —E& zs —Eg

Then there is the possibility of a term like

where e is the density of sites and 8" is the width of the

' J. Holtsmark, Ann. Physik 58, 577 (1919).
r See, for instance, K. M. Watson, Phys. Rev. 105, 1388 (1957),

also the references therein.
In this case this is particularly simple: near such an in6nity

Re(V, ) will also be large so that the energy will simply be changed
to a value at which Im(V, ) is finite.

~oi
zs —Ei zs —E ' zs —Ey zs Eg

X ~~a ~A, —— ~yp.
zs —E~' zs —EIf„zs—EP
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Such a term will get larger the more times we repeat
V;I,. We can represent the terms of our series by closed
diagrams through the various sites of the lattice,
starting and ending at 0 (see Fig. 1), and this type of
diagram involves a "ladder" which repeatedly runs
back and forth from j to k. Physically, we can think of
it as resulting from a pair of closely coupled atoms.

The technique of Watson' ' shows us that we may
eliminate all repeated indices in a self-consistent way
by including in the energy denominator for atom k the
perturbed energy V.(k) calculated from just such a
series of terms as (13). A complicating factor is that
V, (k) must be calculated from a series of diagrams
which do not include uey indices which have previously
appeared before in the particular term of V, (0) we are
calculating. That is, if we want the term

1 1 1
Vp3—V32—V21—Vip

e3 e2 81

where for brevity we introduce the usual "propagator"
notation

is E, V,(j)=-e;, —
then the propagator e2, for instance, is given by

es is Es——V—' '(2—)

1 1 1
=is—Es— Q Vs,—V, i— —Vss

7, l .lw0. 1 ej el ek

important correlation. Namely, suppose that one factor
of our term, V&i/e&""', is particularly large. The V,
of the previous factor, say Vi /ei'"i, will contain the
term:

Therefore this previous factor would contain the large
factor in its denominator, leading to a tendency to
cancel. On a quantitative basis, first think of all V's as
having the same order of magnitude. Then, since the
other terms of the denominator e~ will all be of order 8'
or less, it is easy to see that we simply decrease the total
unless

or
I

Vi, il'/es& lV,

I Vsi/esl &lV/V (17)

W is the breadth of the distribution P(E).
We shall use the limitation (17) in our later com-

putations. We note that it is meaningless if V is small;
but the work of Sec. IV will show that small values of
V are never important. In any case the results do not
depend sensitively on the existence of this limitation.

Actually, (17) is only the most important of an ex-
tensive system of correlations, since similar con-
siderations hold for any group of factors starting from
atom k and ending at atom l, if there is a distinct
return path to atom k from l which has a finite factor.
The fact that isolated large factors are not important,

and again, each of the propagators in this series must be
appropriately modified not to include either 0, 1, or
any of the previous indices in the V,o '(2) series.

Thus we may now write

V.(0) = Q Voi
i&0 is—Es—V,o ' &(k)
j&i,O

kWi, j,O
~ ~ ~

lw ~ ~ ~ ', j,k,o

X VI,— V;, — V;o. (16)
is E; V "(j) —is E—; V,'(i)— —

All of this, ';-'of course, involves a self-consistent type of
reasoning, since it is only if these series converge that
we can find V, (j) in this way, and therefore that we
can define the modified series. We say in defense that
clearly we can always make the sum converge for large
enough s, and also that the V, 's in the higher terms,
since they may have many forbidden indices, are more
convergent than those we derive from them.

The prohibition of repeated indices has two useful
consequences. The most obvious is to prevent extensive
correlations between successive factors V/e of a given
product. However, they also introduce a useful and

'For this purpose, one could equally well use the method of
E. Feenberg, Phys. Rev. 74, 206 (1948).

ioQ-

1$ +13
PATH B

l2

Qi4
/r

r~

Fro. 1. Diagrams corresponding to terms in the perturbation
expansion of V.. (A) may be large and must be summed over;
(B) is a legitimate term.



AB SEN CE OF DIFFUSION

P(E)= 1/W for ——,'W& L'&-,'W,

P(E) =0 for ~E~)-',W,
(19)

and we neglect the inAuence of V, on the frequency
denominators except for the limitation (17).

In the first case we assume that V;I, is finite only
between "nearest neighbors, " of which there are some
6nite number Z; between these neighbors, it has a
constant value V. Then the problem simpli6es to finding
the probability distribution of the product of denomi-
nators P(IIzi)dIID 111

however, should apply even more strongly to groups of
factors. We merely note that we will probably under-
estimate the limiting density, even using (17).

Our problem now is to study series of the form (16)
in which the E's, to a lesser extent the V.'s, and possibly
the V;&'s are stochastic variables. We want primarily
to find whether such series converge in some sense as
s ~ 0; if so, we have found a self-consistent set of
localized wave functions. If the convergence limit on s
is 6nite it may still be possible to calculate some
transport properties, but that can be reserved for later
work.

In the fourth section we discuss such series. The
principle of this discussion is the following: since the
terms Tl, of the series having a given length (number
of denominators, say) L, are themelves random vari-
ables, we try to find a distribution function for their
values. This distribution can be expressed as a number
distribution.

(Average number of terms of length L between

Tz, and Tz+dTz) =n(Tz)dTz. (18)

(It is necessary to use a number rather than a proba-
bility distribution because, when V extends to large r,
the total number of terms of any length is infinite. )

The techniques involved in getting such a distribution
are closely related to the Marko6 method of random
walk theory, although we use, for convenience, the
Laplace transform and the convolution theory for it.
We are able to get e(Tz) explicitly in two cases. In
both cases we make the unimportant simplification
that the distribution function P(E) of the energies E,
is Rat:

dT
e(T)dT= [F(K W/V) jz L(T),

T2
(23)

where L(T) is a slowly varying function relative to T.
This form allows us to make use of the following result,
which is implicit in (for instance) the theory of the
Holtsmark distribution. The probability distribution
of the sum of a collection of random terms of random
sign such as (23) is the same as the distribution of the
single largest term (a) for values greater than or of the
order of the most probable or median value of the sum;
and (b) if L(T) is increasing, or decreasing no more
rapidly than T &. This is essentially the same as the
theorem that the force on a dipole in an unpolarized
gas, or on an electron in a discharge, comes primarily
from the nearest neighbor.

Since L(T) obeys this condition very well in both
cases, at least for reasonable values of V/W, etc., we

may immediately get the critical values of the parame-
ters from (23). We know now that, if

n=1
(24)

(where we use for clarity the case of a finite number of
neighbors), then

cQr

P(Z)dZ Fz(K,W/V) L(Z). —
Z

(25)

First we find (W/V)p to satisfy

E is generally of order Z—1 to Z—2. Th'en obviously

e(T)dT= (Kz/Vz)P(T/Vz)dT. (22)

A second case we are able to solve is that of the
purely random lattice in which V falls o6 as some power
of r. Unfortunately, we have to ignore the restriction of
nonrepeating paths in this case, so that we rather badly
overestimate the sum. On the other hand, this at least
tells us whether or not large r's are important since
this restriction is not important for large jumps. Thus
by this case we can show rigorously that V~1/r'+' is
the correct restriction on the range of V.

In each case we come out with an n(T) of the fol-
lowing form:

g) ~ ~ ~II
e3 er.

(20) Fz(K, (W/V) p)I. (1)= 1. (26)

Given P(IIz&), we can use the idea of the "connectivity"
from the percolation theory of Broadbent and Ham-
mersley. '0 The connectivity E for any given lattice
with near-neighbor connections only is de6ned by
exactly the relation we want:

(Number of nonrepeating paths of length L
'

leading from any given atom)~Kz. (21)
' S. R. Broadbent and J. M. Hammersley, Proc. Cambridge

Phil. Soc. 53, 629 (1957). This work suggested some features of
our approach to the present problem.

If (W/V) has a value even very slightly greater than
this, the most probable value of Z will be small of order
e ~ and the probability of a value=1 will also be of
order e ~. Now we consider I.—& ~: The number of
Z s only increases as L, while with probability 1—e ~

their value is less than e ~. Therefore the series con-
verges almost always if

W/V) (W/V) p, (27)

which is the desired criterion. In Sec. IV the critical
values will be discussed numerically. A typical estimate
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would be (W/V)o=26 for X=4.5 (about correct for
the simple cubic lattice).

Kith this result the theorem is established.

( Vos('
X(s)= P-

»'+Ei' (28)

The probability distribution of such a sum is best
calculated by the MarkoG method, " as modified by
Holtsmark, ' In this method we find the Fourier trans-
form of the probability distribution P(X):

III. PROBABILITY DISTRIBUTION OF THE
FIRST TERM OF V,

Before Eq. (11) we related the transition rate to a
certain quantity X(s), and showed that if X(s) remains
6nite as s —+ 0 no real transport takes place, in the first
order of perturbation theory. Now X(s) is a sum over
all possible single jumps:

The integration here depends on the more stringent
condition V~1/r'+' for large r. The probability dis-
tribution, which will be valid for large X at least, is
familiar from line-broadening theory":

ri(V)
—

~ (V)i' 1-
P(x)=, -p -( 2 r(-:) (

— (33)wx: . &
' w) x

For large X, this falls o6 as X &, as stated in Sec. II:
while the mean of X is divergent, the probability that
X is larger than some value Xp decreases as Xp &. Thus,
for any given starting atom e, the renormalization
constant E may be large, but the probability that v- is
finite is exactly zero.

We see that none of these conclusions are valid for
the case V ~ r ' for large r. In this case a finite s must
be retained. Again looking at the integral (31), let us
substitute V(r)=A/r' for all r." Then we do the
integration over r first:

P(X) = e'*xto(x)dx
aJ

00

i@A'4 00

(29) I= ~~ P(E)dE " d(r') 1 exp—
3 ~ o

' ro(E'+s').
where

V'(r)
~~(x) =exp —e t 1—exp( ix

(
dr . (30)

Es+s'J '

4+2 (x~ & I" P(E)dE

t i& ~ „(Es+s')-:
(34)

4or (" r"I~— r'dr
~ dE 1—exp

ixV'(r)

E2

4n- r" 00

=—(x)1 ~ r'dr V(r) ~ de( 1 exp(i/Ns—)) (32)

ix) & (V(r))
=2( —. (&(-:)

&i) w
n S. Chandrasekhar, Revs. iVIodern Phys. 15, 1 (1943). I am

indebted to L. R. Walker for suggesting the use of the MarkofI.
"

method here.

The average is to be taken over the probability dis-
tribution of E, P(E), and m is the density of sites.

Let us write out the important integral in the
exponent of (30):

t'ixV'(r) )-
I= ~ P(E)dE47r r'dr 1—exp(

(
. (31)

~o . &Eyes).
The behavior of P(X) for large X depends on the
behavior of I for sufFiciently small x. Let us first con-
sider the case s=0. Now for small enough x, and a
finite E (say of order W), the exponential expixV'/E'
can be expanded in a power series in x, and the inte-
gration over r done (so long as V is finite and falls off
faster than r i) to obtain terms which go as x' or higher
powers for small x. Thus only the behavior for small E
is important, and we can neglect the variation of P(E),
replacing it by a constant, 1/W. Then

We see that I indeed has a logarithmic singularity as
s~0. A simple case for which we can evaluate the
integral (34) is the Qat distribution (19) of width W
for which

R~ 4vrA-—I=
2 3

pw~- (xq&
sinh '( —

(

&2s) & i)
(35)

This leads to the probability distribution of the sum
X:

~4v2eA~ 1 )Wp
P(x) =

I

t 3m'*W'*i Xr* t. 2s)

Xexp-
3TV

(W~ '(1q
sinh '( —

( (

—(, (36)
& 2s& EX)

which was discussed in Sec. II.

IV. DISTRIBUTIONS OF HIGH-ORDER TERMS
IN THE PERTURBATION THEORY

In order to simplify the later manipulations, and to
make closer contact with the Watson theory, it will be
useful to expand some of the formalism of the problem.

Equation (4) presents our basic equations of motion:

imp;

f;(s) = '-+ g V,-,f, (s).
is—E; & is —E;

'2 H. Margenau, Phys. Rev. 48, 755 (1935).
"We make this substitution since there exists some r0 beyond

which U —(A/r')~0 We point out that lo"& l.eads to terms in I
of identical form with those we have already found, and thus
independent of s.
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Let us consider simultaneously all possible initial
starting atoms 0. The f(s)'s which result will form a
matrix f~„, of which our f's are the particular row f;0.
It is simple to introduce as the "Green's function" the
matrix

written out as a perturbation series by direct iteration:

1
(jIQIk) =&,v+—V;~+ Z —V;i—Via

ap'

(jI Wlk) = i f—;z,(s),

which satisfies the equation

(37)
1 1 1

+Q —V;)—V) —V„i+ ~ . (44)
& ~ ag' a) a~

1
(jIWIk)= + P V, ,(tIWIk); (3g)

is—E & is —E;

or, if one introduces the matrix

A very direct way to eliminate repeated indices is
as follows: take any given term of (44) and, starting
from the right, look through until we 6nd the 6rst
repetition of the index k. Between these two repetitions
comes a factor:

then 8' satisfies

(jI a Ik) =~1~(~s—&J), I
1 1

(a„
1 1

W= —+—VW.
a a

(39)

The Mpller wave matrix Q is defined also, as

and satis6es the equation

1
Q = 1+—VQ.

a

(40)

(41)

Q=FQ„ (42)

The general philosophy of the multiple-scattering
theory is to try to separate and identify, in these
matrices 0 or S', eGects which are "coherent" in the
sense that they involve perturbations in which, finally,
the system returns coherently to the initial state, from
effects which involve real (as opposed to virtual)
transitions to other states. Another way to put it is
that this is an attempt to define a new set of states,
once the perturbation V is applied, which correspond
in some sense to the unperturbed states, and thus to
have left over only the effects of whatever real transi-
tions may occur. In principle this is exactly what we
are attempting in this paper.

The coherent eGects are mainly included in a di-
agonal coherent wave matrix Q„and the rest of the
problem is contained in the "model operator" Ii:

)1 1 1
= 1—

I

—V»+ Z —Vw—Vi~+
lag )aI,a~

aI aI=—= (Q,)g,
at, —V, (k) eg

(45)

where V,(k) is defined as in (13). The corresponding
term of 0 is then in the form

1
Vsi « ———V ~(Q.)a.

a& a~ a~

Next we continue to look from right to left and 6nd
another similar factor, etc., until we find all such factors
and no more k indices occur. Now everything which
remains to the left will also appear multiplied by the
factors we have found in all other possible combinations
and repetitions, and in fact by all possible such factors
in all such combinations. Summing all such factors, we
get for that series which comes to the right of the last
repetition of index k:

1 ~1 1 1
1+—V»+I —V» I + + 2 V~i—Vu

a, Ea, ) ajar

1 1
+I 2 —v~~—v.a I+

ag a~ )

where we want F to satisfy an equation like

F=1+— PVF,
a—V

We now begin the same process as in (45), looking
for repetitions of the index m which appear next. We
collect together all such terms, and finally find that we

(43) can replace a„by a„—V,~(N), where

where I' is an operator which prevents in some way the
repetition of indices in the perturbation series for Ii,
while V, is a correction which must therefore be made
to the energy a.

It is perhaps simplest just to go ahead and show
what must be done. The solution of Eq. (41) may be

1
VP(N)=V. + Q V.i—«~

1
+ P V„i—V, —V„„. (46)

L, m, wk, n al a~

This process may be repeated until we come to the end
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Q.=a/e,

} }
+—P V,,—g V;„—V.+" . V'/(-', 6) &-,'W,

of the given term. Thus we have successfully expanded make the approximation of neglecting it altogether as
0 as an unimportant correction to the stochastic variable

E;. Since we are for simplicity confining ourselves to
Cy the Qat distribution P(F)=1/W of Eq. (19), we can

express (17) semiquantitatively. The smallest denomi-
nator e& which will not seriously a6ect the probability

1 } distribution of subsequent factors we define to be 6/2.
F;~a=—VJ{+ Z V~{ —V{{— (47) The quantity 6/2 satisfies the criterion that the con-

tribution to V, from it must be less than the maximum
possible E, :

e~ l&m, k, 7' eg m&i, k e

The final step is obvious: in each of the V,'s in (45)
itself we eliminate repeated indices in an exactly similar
manner, obtaining expressions like (16) for V,."

Now the usefulness of such expressions in the usual
multiple-scattering theory comes only from the fact
that the limitations on the sums are unimportant, since
there are an infinite number of V;I, 's starting from any
j, each being small. In our case we have a di6'erent
kind of fortunate circumstance which allows us to get
around this problem; namely, all of the quantities of
the theory are stochastic variables, so that all we really
wish to know is the distribution function of the e; s,
which except for the restriction (17) is practically that
of the E,-'s unless V, is quite large. Even if V, were
large, one might study it as a stochastic variable.

We now have the problem of calculating probability
distributions for products such as the terms of (47).
Because the only question is that of convergence we
are interested only in the terms of very high order, that
is, those of order I. with I))}.We call such a term T:

or
d )4V'/W. (50)

Our approximation is simply to take this as a lower
limit on e and modify (19) to

P(;)=, s~& I;I &sW;5'—6 (51)

P(e,)=0, le;I &-,'4 or le;I)-', W.

We shall find that the use of (51) changes our con-
vergence limits by less than a factor of 2, in spite of its
apparent importance in eliminating singular factors;
this is our justification for the crude approximation.

We now take up the question of the probability
distribution of T. Let us define the variable 5 as

II—=e'/(l W)'
i-I e;

(52)

The range of 5 starts from zero, so that we can apply a
Laplace transformation to its probability distribution:

1 1

e; eg em

=exp{Dn V;{+inV{~+ (I. terms) j
—Dne,+inc{+ (1.terms) j}. (48)

FI,(p) =, ' e "eP(S)dS

I{{exp {p{{ne;—ln{-',W)]{).j'=I
(53)

In Sec. II we presented the two cases in which it has
been possible to calculate explicitly the number dis-
tribution of T. We take up the simplest erst: the case
in which V is a constant, so that the only stochastic
element in (48) is the denominators. In this case

L }
~= V'll —.

l=I eg

(49)

To hand the convergence limits, we go to s=O im-
mediately. Then clearly T has random sign, which
must be taken into account later in summing the T's.

As we discussed before, V, is important only in that
it causes a certain restriction (17) on the magnitude of
the separate factors of the product; otherwise we shall

'4 I am indebted to P. A. Wold for many helpful discussions on
the above, and in particular for pointing out that (43}is true only
in the sense of the perturbation series.

Since all the e s are independent variables, the
average in (53) is just the product of the separate
averages. Thus

F~(p) =
-1—(6/W) &+' W

TV—2«
(»-1) (54)

which shows that it is of the form (23).

For regions of 5 in which we may neglect 6, this is very
easily inverted:

6=0: Fr. (p) 1/(p+1), P(S) = e S '/I'(I) (55)

Since
2'= V~/(-', W) ~ee,

to our order of approximation we have

t'2eV) ~ 1nT ]2Vy ~dT
P(T')d2'=

I I
—»I I, (56)

&W) I. (W) r
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It is interesting to note that while (55) is a rea-
sonably narrow distribution, satisfactorily obeying the
central limit theorem, the fact that the quantity of
interest is exponential in S transfers our attention to
what, in (55), appears to be the extreme tail of the
distribution. This is a characteristic of this problem.
On the other hand, our task is simplified, in that nothing
smaller than factors exponential in I.aBects our results.

Without neglecting 6, we can get the full distribution
with sufhcient accuracy from (54) by applying the
inversion formula for the Laplace transform,

1gnW

—Ln ——W
e

Ln&
2

/
L /

r
/

I
/ I

—,
' tnW +en~ l.n—W

2

~
joo

P(S)=
~

F.(p)" dp,
2' Z goo

(57)
Fro. 2. The function tt of Eq. (64), giving the slowly varying

part of E(S).

and using the method of steepest descents. Writing
out (57) in appropriate form for this method, we obtain

1
P(S) =—' exp pS L ln(p+1—)

neglect 1 relative to (6/W) r '. Here it becomes neces-
sary to continue the logarithms in (58) to negative
values of their arguments, but this can be done by
referring to (54) and noticing that we must change the
sign of 1+p and —(6/W) ~' simultaneously. Then the
saddle-point condition is

(58)
1.

S— +L ln—=0-,
1+ps W

(61)

W Syr
P(s)=e~s I) & W&

(62)

The results (56), (60), and (62) may be summarized
in the following way:

P(s) =
I l

e 'L4(S/L)l'
(
(1—6/W)

(63)

First notice that as p becomes large and positive, the and the probability of such values of S is
exponent will approach +Do unless S(0. If S(0, we
can find a path via p ~ + ao and P(S)=0, as it should
be. Similarly, as p~ —~, the S term dominates if
S)L ln(w/6), so that, correctly, P(S)L ln(w/6)) =0.
Within these limits, there is a saddle point for finite p
which may be found by diGerentiating the exponent.

At the point 1+p=0, the exponent changes char-
acter, from not depending on 6/W above this point to
depending primarily on it below. lt is instructive to
expand the exponent about this point:

L ln(1+p)+lnl 1———
l

w&

(~~""
l (

&w) l & w)

W 1+p t' Wi'
-in in—

l
in—

l
". . (59)

2

As we see, this point is actually not a singularity.
Taking derivatives, we find that the condition that the
saddle be here is:

S
l „,- r= ,'L 1n(w/6), --

where f is a slowly varying function which may be
estimated in each of the three regions:

I: —,'L in(w/6) &)S)0, iP(s/L)~s/L;
II: S=stL 1n(w/6), f(s/L) in(W/6)/e;

(64)III: I.1n(w/6)) S»stL in(W/6),
lt (s/L)=in(w/a) —(s/I).

The function g is easily plotted approximately from
these results and is shown in Fig. 2. For the probability
distribution of T, we obtain

dT f 2eVy z
P(T)dT=

2 IW)
lnT 2V

Xf~ —ln
(

w)
and that at this point

( Wy |'1n(w/6) y
~s-

&1—~/W&
60

Except for the most remote parts of region III, (65) is
of the form (23) and satisfies our condition.

As S gets appreciably larger than this value, F&(p) We have not explored very carefully the corrections
and the exponent again become simple when we can to the saddle-point method, both because we need only
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terms of the order eL, and because the results are clearly
in accordance with expectations.

Before studying (65) numerically, let us go on to
the second case which can be solved; namely,

V= Vs/r'~. (66)

Ke find a solution only in the limited sense that various
crude approximations are made for small r; what we

try to do is to assure ourselves that the region of large
r and small V is not important, in spite of the extra
mathematical diKculties to which it leads.

These "crude approximations" are threefold: (a) We
ignore the fact that a path leading to an atom from its
nearest neighbor must leave it via a further neighbor-
i.e., in each factor we allow V to be randomly dis-
tributed, ignoring the favorable correlations caused
by the restriction to nonrepeating paths. (b) We ignore
(17) and thus can use (55) and (56) as the distribution
function of the denominators, again overestimating the
eGects of large V's without disturbing the small V
region. (c) We limit

~
Vi simply by introducing a

minimum radius a; the maximum V is then

V & V = V /a'~ (67)

Now we study the distribution of terms of the form

Thus, once we have the distribution of Z, we can find
the distribution of S+Z by convolution of the bilateral
Laplace transforms, and thence find that of T.

The required Laplace transform is

yr, (p) = P(Z) e—&xdZ

t

4rr u' t' (V/V ) 3'd(V/V )

3N Js (V/V )'+'~ N
(72)

vi(p) =
I p& —1/N. (73)
&Nrss] I P+1/N

Here we have defined

a~re'= 1/p (74)

The transform of the denominators, Ii I.(p), was
convergent for p) —1 I Eq. (55)). Thus for N)1, or
forces falling off more rapidly than 1/r', the two trans-
forms have a common strip of convergence. This is the
criterion on range we already expected from Sec. III.
Now let

X=S+Z,

The distribution of the V's

using a perfectly random
distances:

e(X)dXe—&x= |Pl.(P).

0~(p) = ~i(p)F ~(p), —1&P& —1/N

II e-. (68)
j=l

Also, by the convolution theorem,
may be approximated by
distribution of neighbor

(75)

4m.p
N(V)dV= Vs"~

3Ã
V(V

Vl+1/N

=0, V)V .

I(r)dr =4rrpr'dr,

where p is the density of sites. From this and (67) the
distribution of V is immediately

( gs )r 1 tr

(Nr sj (1+p)(p+1/N) i

(76)

The inversion of this is simple if we apply the shifting
operator to p, bringing the origin to the center of the
convergence strip:

p'= p+-', (1+1/N),

L

II V;= V„~es, (70)

The numerator in (68) may take on values from V ~

to zero; the inverse of the denominator, from ~ to a
certain minimum. Again the mathematics is more
familiar if we study the logarithm, which is a variable
extending from —~ to ~. Thus it is necessary to use
now the bilateral Laplace transform. This causes no
difEculty in (53), (55), and (56) since S)0 anyhow;
we simply reinterpret these as the corresponding
bilateral formulas.

The logarithmic variable Z, corresponding to S, we
define by

Then
rs'(X) =n(X)e& "+"~&

-L

The standard inversion formula now gives us

1 t'" dp' exp(p'X) as
rs'(X) =

2vrs";„P(1—1/N)' —P"j~.Nres

(77)

~ (78)

and the quantities (68) whose distribution we want are
I

This integral can be expressed in terms of the Bessel
function Kr; (which is actually a polynomial in
elementary functions) by Basset's formula, "which in

(W/2) ies+z (71) "G. N. Watson, Bessel Funcksorrs (Cambridge University Press,
Cambridge, 1944), p. 172.
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n(X) = exp[ ——',(1+1/Ã)X]. (79)
lVre'(1 1/—N)'

Now we get the number distribution of the terms T,
using (71):

is(T)dT =
T' '" lVre'(1 1/N)' — W z

. (80)

Again we find a distribution of the form (23), satisfying
very well the condition that the distribution of large
values be that of the largest term.

Now the only remaining task to complete the dis-
cussion is to study the criterion for localization nu-
merically, using (23) and (26). First we shall deal very
brieQy with the unrealistic second case. Upon using
(80), Eq. (26) becomes

turn can be expanded by the well-known asymptotic
expansion for large order. "The result, for our purposes,
could be foreseen by realizing that in (78) practically
all the contribution will come from p'=0. Using (77),
and neglecting unimportant constant factors, it is

2V lnT
ln

I. (82)

which we can show to be true at the critical V/W' in
all cas'es.

Equation (26) for the critical W/V is, when one uses
(65) and takes the Lth root,

have a close neighbor for which V&$", there is still
little or no spin diGusion.

These difficulties with correlations confine our
quantitative work to the one case in which this problem
is solved for us, at least in principle, by Hammersley's
work: The regular lattice with a finite number Z of
equal interactions.

Here we apply very directly the discussion of Eqs.
(22)—(26): that is, we find the probability distribution
of the sum of EL terms from that of the largest term,
and thence find a critical (W/V) s below which all the
higher terms are exponentially small with exponentially
large probability. The criterion for applicability of the
basic theorem in the case of the present distribution
(65) turns out to be

-I 2y -)L(1+1/N)

. 1Vrs'(1 —1/Ã)'- — W-

It is interesting to put this in the following form:

-4I3»((N+»

.X'—1/1V'.

(81)

1= (V/W), f{—inL2(V/W), $}. (83)
1—(6/W).

Since we are really quite uncertain as to exactly how
to take the correlations into account, we shall solve
(83) first in the case of no correlation, which gives us
an upper limit on (W/V)s, as well as in the case of a
finite 6 given by (50).

I. Upper limit. Here we —assume that 6=0 and that
tP for region I is always correct, so that

The 3Eth root of the denominator on the left can be
thought of as an effective radius of interaction; namely,
contributions from much greater distances are certainly
of no importance. Except when E is very close to unity
this radius is smaller than the mean nearest-neighbor
distance (~0.8r,) and strongly dependent upon a.
This tells us two things: first, that the infinite range of
the potential is, unless E~1, of no importance, and the
important interactions are with close neighbors; and
second, that this particular calculation, which did not
take into account the important correlations of near
neighbors introduced by the restriction to nonrepeating
paths, is of no direct value.

An order-of-magnitude guess at the correct answer
to this problem might be gotten by inserting something
like r, for a in (81); this eliminates the false effect of
single, very close neighbors, which by the restriction
to nonrepeating paths should make no contribution.
%e see then that r,«~r„or approximately the mean
nearest-neighbor distance. The resulting V/W is rather
surprisingly large and tends to explain Feher's result
that even when a considerable fraction of the atoms

"J.W. Nicholson, PhiL Mag. 20, 938 (1910).

eE ln(W/2U)„. i.——(W/2V)„. i.. (84)

2E ln(W/2U), = (W/2V), .
1—(4V'/W'-),

(85)

Except for the correction in the denominator, which is
negligible for all but the smallest values of E, this is
the same equation as before with 2 replacing e. Its

A rough solution by iteration is clearly (W/2V)„. i.
=eE In(eE). More accurate solutions can be obtained
by plotting (84) and are given in Fig. 3. The values are
rather large; for instance, at E=4.5, approximately
correct for the simple cubic lattice, (W/2V) .i.=45.
The rather large effect of increasing connectivity is
interesting.

II. I.over lie&it.—Next let us do the calculation
taking into account the approximate lower limit (50).
It turns out that in this case the T' of interest is in
region II. In fact, with the definition (50),

—ln(2 V/W), = —,
' ln(W/5),

so that 5 is exactly correct for region II. This leads to
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final amplitudes on the various atoms by the pre-
scription:

(87)limio. (g I
W

I k) =a, s (E),
@~0

where a;&(E) is the amplitude at energy E and on atom

j of the wave function which initially was unity on
atom k. The total amplitude on atom j is the sum of
squares of (87) over all energies E which are exact
eigenenergies of the problem. Finally, 5' obeys the
usual definition of the Green's function:

20

tV=-
is Hs V—io+—E H— (88)

IO

0

LThis is just (39).j
The scheme of the multiple-scattering method is to

replace V in (88) by a number V„which can, of course,
only be done in the diagonal elements:

FIG. 3. Numerical estimates for the critical W/2V, the ratio of
line width to interaction, for transport, plotted against con-
nectivity E. The upper curve is a quasi-exact upper limit; the
lower one is our best estimate.

solution is the lower curve of Fig. 3. It is very unlikely
that (85) is accurate for E 1, so no plot has been made
in this region. This concludes our estimates of the
critical ratio for transport.

s= o+iE. (86)

According to the meaning of f;s(s), we can find the
'7 Our criterion for nontransport is the same as that of L. Van

Hove LPhysica 23, 441 (1957); see especially Sec. 47 translated
into probability language. Van Hove's resolvent R& is our Green's
function and his G~ our V,.

V. MEANING OP CONVERGENCE OF THE
PERTURBATION THEORY

The results of Secs. III and IV may be stated simply
as follows:

(1) The first few terms of perturbation theory are
convergent in the sense that Im(V, ) is finite with
probability unity, at any particular randomly chosen
point on the energy axis.

(2) The terms of order L or higher are, at any par-
ticular random point on the energy axis, smaller than
e '~ with probability 1—e '~, under the appropriate
conditions.

We discuss here the question of what this tells us
about the actual perturbed energy states. Our con-
clusion is that we can show that a typical perturbed
state is localized with unity probability; but that we
cannot prove that it is possible to assign localized
perturbed states a one-to-one correspondence with
localized unperturbed states in any obvious way, so
that perhaps with very small probability a few states
may not be localized in any clear sense. '

Equation (37) introduces the "Green's function"
(jl W(s) I

k) = if;s(s) Iet—us defin. e

(~llvl j)=.
io+E F, V.r(i—o+E—)

(89)

Then the general elements of W are obtained by using
the model operator F of (42) and (47):

(jllvlk)=(jlFlk)(kl~'Ik) (9o)

It is important that in the expansion (47) of F the
particular denominator occurring in (89) never appears.
I.et us start by thinking of a large but finite system,
so that we know the energy levels are not a continuum.
Then the exact energies of the problem are clearly the
poles of lV, which occur at

E—E.—V (f)(E)—0 (91)
This is just the expression one gets in Brillouin-Wigner
perturbation theory. At such an energy, the amplitude
at t —+ is given by

a,; (E)=lim' ' io i I [mV—„."~(io+E))
(92)

so that if Im V, converges and this convergence remains
as S~ ~, this is finite, not zero as in usual transport
theory.

Thus our proof that, at an arbitrarily chosen point
E, ImV„or any of the quantities of the theory,
converge, and (as we could also show) (jlFlk) falls
off rapidly with distance, would be complete if (91)
furnished us with only one solution per E,, and if this
solution were displaced by a finite and indeterminate
amount from the poles of V, or E. Unfortunately, this
is only true of some of the solutions of (91), those
which correspond to nearby localized functions; but
because (91) is a Brillouin-Wigner result it also con-
tains all the other eigenstates as well. We have to show,
of those distant from atom j, that their energies are
mo$ random relative to the poles of (V,"&), but instead
are specially related to V, so that a,; and a;~ are
decreasing functions of distance.



ABSENCE OF DIFF US ION

Why this is so is just as apparent from the simplest
second-order theory as from the whole sum. Let us
write (91) to second order:

E E,——Q =0.
yg g jv~

Clearly this has a solution Eo(j) near E, at which the
sum takes on the value

(V~~)'
Ep(k) —EI—— = (8E)I,.

jv~ —jv.
(93)

This solution is closer to E&, the weaker the coupling
with j.

Let us now compute a,,(E) at this energy, from (92).
It is

a;;(Ep(k))—lim 1——Im
cryo

(V )2
— —1

(8E)a+Zo

&(1. (94)
(V~')'+ (E~—E~)'

approximately. There is no close relation between
Ep(j) and any of the poles of V, to this order. But even
for very small V;~'s it also has a solution Eo(k) near
E&, given by

In the finite random lattice with all orders of per-
turbations the same considerations obviously hold;
now, however, EI, is a perturbed energy, and V;&
includes virtual eGects. In principle all the same
considerations apply, since except for the exact localized
state El, of (93) we have proved that all contributions
to V's and I's fall oG with distance suKciently fast.
Taking the limit E—& ~ cannot change the above
arguments for most states. However, because one of
the distant wave functions may pop up at any point
on the energy axis, it is not easy to see a way to assign
a one-to-one correspondence of sites j and perturbed
energies. This seems hardly necessary for a qualitative
understanding of what is happening, however.

The diTiculty lies in the fact that V, is not really a
continuous function in any sense. What can be done
is to eliminate distant neighbors beyond a certain
radius R. Then we find an appropriate perturbed
energy E,'(R). The contribution to V„BV,(R), from
beyond R is a probability variable which can be made
to have as narrow a distribution as desired, but at all
R may be large at a few K Thus it is probable, but not
certain, that a state localized around j has an energy
within a predetermined 8V, (R) of E (R). However,

as we increase the size of the system we can never And

an R beyond which E,'(R) is always as close as we like

to the correct value. The fault lies in the Brillouin-

Wigner technique, and is similar to problems as yet
unsolved in other theories using this technique.

In a similar way, one can show that

(jI~ Ik)=(»—E~)/I V,~ I,
. so that

lim a;,(E,(k))=0
v;~a

also.

(95)
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