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Three-dimensional localization of ultracold atoms
in an optical disordered potential
F. Jendrzejewski1, A. Bernard1, K. Müller1, P. Cheinet1, V. Josse1*, M. Piraud1, L. Pezzé1,
L. Sanchez-Palencia1, A. Aspect1 and P. Bouyer1,2

In disordered media, quantum interference effects are expected to induce complete suppression of electron conduction. The
phenomenon, known as Anderson localization, has a counterpart with classical waves that has been observed in acoustics,
electromagnetism and optics, but a direct observation for particles remains elusive. Here, we report the observation of the
three-dimensional localization of ultracold atoms in a disordered potential created by a speckle laser field. A phenomenological
analysis of our data distinguishes a localized component of the resulting density profile from a diffusive component. The
observed localization cannot be interpreted as the classical trapping of particles with energy below the classical percolation
threshold in the disorder, nor can it be understood as quantum trapping in local potential minima. Instead, our data are
compatible with the self-consistent theory of Anderson localization tailored to our system, involving a heuristic energy shift
that offers scope for future interpretation.

Anderson localization (AL) was proposed more than 50 years
ago1 to understand how disorder can lead to the total
cancellation of electron conduction in certain materials. It

is a purely quantum, one-particle effect, which can be interpreted
as due to interference between the various amplitudes associated
with the scattering paths of a matter wave propagating among
impurities2. According to the celebrated scaling theory3, AL
depends on the dimension, and in the three-dimensional (3D) case
a mobility edge is predicted. It is an energy threshold separating
localized states, which decay to zero at infinity and correspond to
insulators, from extended states, which correspond to conductors.
However, determining the precise value of the mobility edge, and
the corresponding critical behaviour around it, remains a challenge
for microscopic theory, numerical simulations, and experiments2.
The quest for AL has been pursued not only in condensed
matter physics4, but also in wave physics5, and experiments have
been carried out with light waves6–9, microwaves10,11 and acoustic
waves12. Following theoretical proposals13–18, recent experiments
have shown that ultracold atoms in optical disorder constitute a
remarkable system to study 1D localization19,20 or 2D diffusion21,22

of matter waves in real space (see refs 23,24 for recent reviews).
Cold atoms in a ‘kicked rotor’ situation have also been used to
demonstrate 1D dynamical localization25, that is, localization in
p-space, and to study a mapping of 3D AL in that space26. Here,
we report the observation of 3D localization of ultracold atoms of
a Bose–Einstein condensate (BEC), suspended against gravity, and
released in a 3D optical disordered potential with short correlation
lengths in all directions. Fluorescence imaging of the expanding
cloud yields density profiles composed of a steady localized part
and a diffusive part. A phenomenological analysis allows us to
determine the localized fraction and the diffusion coefficients of the
diffusing part. The localization we observe cannot be interpreted
as classical trapping of particles with energy below the classical
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percolation threshold in the disorder, which is well below the
average energy of the atoms. Similarly, quantum trapping in local
potential minima is excluded, because the local potential wells are
too tight to support stationary states with energy less than the
potential well depth. In contrast, our observations are compatible
with the self-consistent theory of AL (ref. 27), taking into account
the specific features of the experiment, in particular the broad
energy distribution of the atoms placed in the disordered potential,
provided we introduce a heuristic energy shift whose interpretation
remains to be elucidated.

Experimental scheme
Our scheme (Fig. 1a), described in more detail in the Methods sec-
tion, is a generalization of the one that allowed us to demonstrate AL
in 1D (refs 15,19). It starts with a dilute BEC with several 104 atoms
of 87Rb, initially in a shallow quasi-isotropic optical trap. It is in
thermal equilibrium, with about the same number of uncondensed
atoms. When the trap is switched off, the atoms are kept suspended
against gravity by a magnetic field gradient. Monitoring the free
expansion of the suspended atomic cloud, we obtain the values of
the initial chemical potential µin (µin/h ' 40Hz, where h is the
Planck constant) and the temperature (T ∼1 nK).

To study localization, an optical disorder is switched on, in
less than 100 µs, at time ti = 50ms after release. At that time, the
atom–atom interaction energy Eint, estimated from the observed
atomic density, has become negligible (Eint/h ∼ 1Hz) compared
with the disorder amplitude (see below). The disordered potential
V (r) is created by the coherent addition of two crossed speckle
laser fields28,29 with the same polarization. It is repulsive with an
exponential probability distribution P(V ) = V −1R exp(−V /VR).
The potential amplitude,VR, is equal both to the average value of the
potential and its standard deviation. It can be varied from 0 up to
VR/h=1.1 kHz. Figure 1b shows an example of a specific realization
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Figure 1 | Experiment. a, A dilute BEC of ultracold 87Rb atoms, initially trapped by the red-detuned crossed laser beams, is released and subjected to a
repulsive disordered potential. This potential is realized by the optical speckle field produced by two crossed, blue-detuned, coherent laser beams passed
through diffusive plates and focused on the atoms. The (paramagnetic) atoms are suspended against gravity by a magnetic field gradient (produced by the
yellow coils), and the expansion of the atomic cloud can be observed for times as long as 6 s. The EMCCD camera images the fluorescence produced by a
resonant probe, and yields the atomic column density integrated along the x axis. b, False colour representation of a realization of the disordered potential
in the x=0, y=0 and z=0 planes. c, Plots of the 3D autocorrelation function of the disordered potential in the x=0, y=0 and z=0 planes (the equal
level lines represent levels separated by 14% of the maximum value).

of the speckle potential. The random spatial distribution has an
anisotropic autocorrelation function (Fig. 1c). A 3D Gaussian fit of
the central peak of the autocorrelation function yields standard radii
of 0.11 µm, 0.27 µm and 0.08 µm, along the main axes (axis y and
the two bisecting lines of x–z). For such a disordered potential, the
classical percolation threshold is less than 10−2VR, eliminating the
possibility of classical trapping of the atoms, which have a typical
energy of the order of VR (see Methods). Moreover, the correlation
energy17 ER= h̄2/mσ 2

R (where σR'0.13 µm is the geometric average
of the standard radii of the autocorrelation function, m the atom
mass and h̄= h/2π the reduced Planck constant) is larger than the
disorder amplitudes VR used in the experiment (ER/h= 6.5 kHz).
Then, the local minima of the disordered potential do not support
bound states, eliminating the possibility of quantum trapping in
individual local minima.

We observe the atomic cloud, at a given time t , by direct in situ
fluorescence imaging along the x axis (see Methods). This yields
the column density ñ(y,z,t )=

∫
dx n(x,y,z,t ) (where n(x,y,z,t )

is the 3D atomic density). The obtained profiles have small residual
spatial fluctuations (Fig. 2a), which do not depend on the particular
realization of the laser speckle disorder. This can be traced to the av-
eraging arising from the finite spatial resolution (15 µm, FWHM) of
the imaging system, and it is consistentwith the fact that each profile
is a sum of many profiles associated with different atom energy
components that probe different, uncorrelated, k-components of
the disordered potential. One can then consider that the observed
profiles represent, within the experimental accuracy, an ensemble
average over different realizations of the disorder.

We have studied how the expansion of the released atomic cloud
is affected when we apply the laser speckle potential. Figure 2a
shows the evolution of the observed column density profiles for two
different values of the disorder amplitude VR. For the smaller value
(VR/h= 135Hz), we observe a diffusive expansion (Fig. 2b). After
1.2 s, the density at the centre has decreased somuch that the atomic
cloud is no longer measurable. In contrast, for the larger value of
the disorder amplitude (VR/h= 680Hz), the diffusive expansion is
slower (Fig. 2b), and an almost steady peak survives at the centre for
observation times as long as 6 s (Fig. 2c).

Phenomenological analysis of the data
To analyse these observations, we use a phenomenological
model, assuming that the observed profiles are the sum of two
contributions: (1) a steady localized part that is the replica of the

initial profile ñi(y,z), that is, the BEC and its thermal wings at t = ti;
(2) a diffusive expanding part ñD(y,z,t ), whose contribution at the
centre decays towards zero. More precisely, we assume that we can
decompose the observed column density as

ñ(y,z,t )= floc× ñi(y,z)+ ñD(y,z,t ) (1)

This decomposition is supported by the observation (Fig. 2b) that
the measured rms sizes1u, along the u∈ {y,z} axes, of the column
density profiles, vary as 1u(t )2 =1u(ti)2 + 2〈Du

〉(t − ti). Linear
fits allow us to measure the diffusion coefficients 〈Dy

〉 and 〈Dz
〉.

The brackets indicate an average over the energy distribution of
the atoms. Figure 2c shows that the column density at the centre
tends asymptotically towards a finite value, which is determined by
a fit to the function ñ(0,0,t )/ñi(0,0)= A+B(t − ti)−1, where A
refers to the localized part. The (t − ti)−1 evolution is expected for
a diffusive behaviour of the column density at the centre when the
size of the initial profile is negligible. It results from the integration
over one dimension of the (t − ti)−3/2 evolution expected for the
3D density at the origin. Finally, as we will see below, theory
predicts that the localization lengths are smaller than the resolution
of the images, so that the profile of the localized part is a replica
of the initial profile, hence the form chosen for the first term in
equation (1). The constant A of the fit is then interpreted as the
localized fraction of atoms, floc. It is found to be equal to 21%
for VR/h= 680Hz, and 1% for VR/h= 135Hz. In the absence of
disorder (VR = 0), we fit the central density by A+ B(t − ti)−2,
as expected for a ballistic expansion, and find A = 0, that is, a
null localized fraction.

The phenomenological analysis of the experimental data
described above has been carried out for different values of VR.
Figure 3 shows that the localized fraction, which is vanishingly
small at very weak disorder, increases rapidly with VR above
VR/h∼ 135Hz, and reaches a nearly saturated value slightly larger
than 20% at VR/h∼ 500Hz. Note that inhomogeneous atom losses
(see Methods) entail an overestimation of the condensed fraction
for VR/h< 400Hz, so that correcting for it would result in an even
steeper increase of the observed condensed fraction. Similarly, Fig. 4
shows that themeasured average diffusion coefficients, 〈Du

〉, exhibit
a steep decrease with the disorder amplitude VR around the value at
which a localized fraction appears, and reach almost constant values
at VR/h∼ 500Hz. These values of a few h̄/3m are of the order of
what is expected just above themobility edge17.
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Figure 2 | Evolution of the atomic cloud for two different amplitudes of the disorder. a, Plots of the column density in the y–z plane, as observed by
fluorescence imaging along the x axis (Fig. 1a) at various delays t− ti after application of the disorder. For a weak disorder (VR/h= 135 Hz), we observe an
expansion leading to the disappearance of any observable atomic density for times larger than 1.2 s. For a strong disorder (VR/h=680 Hz), the atomic
cloud is still clearly visible after 6 s, and the profile shows a steady peak around the origin, superposed on a slowly expanding component. As shown in
Fig. 2b, the expanding parts have a diffusive behaviour in both cases. b, Time evolution of the mean squared widths along y (blue circles) and z (red
diamonds) of the column density profiles, and their fits by straight lines, yielding the diffusion coefficients along y and z. The anisotropy of the disorder,
visible on Fig. 1b, is reflected on the diffusion coefficients. c, Time evolution of the column density at the centre (green circles). The black line is a fit by the
function A+B/(t− ti), where the asympotic value A is interpreted as the localized fraction floc (see text). The inset shows the same data plotted as a
function of 1/(t− ti), fitted by the black straight line whose intercept on the left axis yields floc.
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Figure 3 | Localized fraction versus disorder amplitude. The points give
the localized fraction floc determined from the decay of the central density
(Fig. 2c). The error bars reflect the uncertainty on each individual fit and
the fluctuations from shot to shot. The solid line shows the results of the
theoretical calculation, including the heuristic relative energy shift
explained in the text.

Theoretical description
We now compare the results of the phenomenological analysis of
the experimental data with the theory of quantum transport and

AL specifically applied to our situation, that is, taking into account:
(1) the spatial extension of the atomic gas at the initial time ti;
(2) its energy distribution induced by the sudden application of the
disordered potential at time ti; (3) the anisotropy of the 3D speckle
potential.Wewrite the spatial density of the atomic gas as15,16,18

n(r,t )=
∫

dri
∫

dE Di(ri,E)P(r−ri,t− ti|E) (2)

where Di(r,E) represents the semi-classical joint position–energy
density just after the time ti when the speckle potential is switched
on, and P(r−ri,t−ti|E) is the (anisotropic) probability of quantum
transport, that is, the probability distribution that a particle of
energyE , placed at point ri at time ti, is found at point r at time t .

The function P(r,t |E), whose character changes from localized
to extended when the energy passes the mobility edge Ec, plays the
central role in AL. We calculate it self-consistently within the on-
shell Born approximation27,30, using the same method as in ref. 31,
except that here we do not include the real part of the self-energy
(see Methods). It provides the mobility edge Ec and the expressions
of the probability of quantum transport30,31. Within the above
approximation, we find Ec−VR ' 1.6V 2

R/ER for our experimental
parameters (for example, [Ec − VR]/h = 4.5Hz and 108Hz for
VR/h=135Hz and 680Hz respectively). In the AL regime (E<Ec),
P(r|E) is a static, anisotropic, exponentially localized function,
characterized by the localization tensor Lloc(E). In the diffusive
regime (E >Ec), P(r|E) is a time-dependent, anisotropic, Gaussian
function, characterized by the self-consistent diffusion tensor
D∗(E). In the case where the range of atomic energies extends
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Figure 4 |Diffusion coefficient versus disorder amplitude. The blue
squares and red circles give the diffusion coefficients, 〈Du

〉, in units of
h̄/3m, along the u= y,z axes, respectively. These coefficients are derived
from the evolution of the mean squared widths of the atomic cloud
(Fig. 2b). The error bars reflect the effect of background noise on the mean
squared widths. The solid blue (y) and red (z) lines show the results of the
theoretical calculation of these coefficients, using the same heuristic
energy shift as in Fig. 3.

below and above the mobility edge, both expressions of P(r,t |E)
(equations (3) and (4) in Methods) play a role in the integral of
equation (2), leading respectively to a localized component and a
diffusing component.

To calculate Di(r, E), we use the fact that the sudden
application of the disorder (in ∼100 µs in the experiment) at
time ti hardly affects the density profile, ni(r), but significantly
modifies the energy distribution because the disorder is strong
(for example, V 2

R/ER'µin for VR/h' 500Hz). We thus assume,
for simplicity, separation of the position and energy variables,
so that Di(r,E)= ni(r)× fi(E). The initial density profile ni(r)
is determined from fits to the measured density profile at time
ti (upper panels in Fig. 5). On the other hand, we have no
simple experimental method for determining precisely the energy
distribution fi(E) of the atoms in the disorder, and we calculate
it numerically (see Methods). We find that fi(E) is peaked
around VR (the average value of the disordered potential) with a
width 1Efi ranging from 1Efi/h∼ 20Hz (for VR/h= 135Hz) to
1Efi/h∼ 140Hz (for VR/h= 680Hz).

As expected, the calculation of the localized functions shows
that the localization lengths (the components of Lloc(E)) increase
with the energy and diverge at the mobility edge Ec. Except in
a narrow window 1E below Ec (for example, 1E/h∼ 20Hz for
VR/h= 680Hz), however, they remain smaller than the imaging
resolution (15 µm), and much smaller than the size of the atomic
cloud when the disorder is switched on (Fig. 5). As most of the
energy components are outside that window,wemakeP(r|E)'δ(r)
for E < Ec. This yields a localized profile, which is simply a replica
of the initial profile ñi(y,z), supporting the form chosen for the first
term in equation (1) used for the phenomenological analysis.

The calculated localized fraction is given by floc =
∫ Ec
−∞

dE fi(E).
When we perform this calculation, we find numerical results
significantly larger than the measured values. Actually, simple
inspection shows that the numerical value found for floc is extremely
sensitive to the numerical accuracy in the determination of fi(E)
as well as to any approximation in the theoretical calculations
of Ec. It is also very sensitive to uncertainties in experimental
parameters, in particular the amplitude VR and the details of the
disordered potential. Considering all these uncertainties, we tried to
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Figure 5 | Evolution of the density profiles in a strong disorder
(VR/h=680 Hz): experiment versus theory. The figure shows cuts of the
column density profiles along y (ñ(y,0,t), left column) and z (ñ(0,z,t),
right column), at various delays after application of the disorder. The solid
black lines are the experimental data. In the top panels (corresponding to
the initial time t= ti when the disorder is switched on), the solid red lines
are fits to the data. In all other panels (corresponding to t> ti), the solid red
lines are these fitted initial profiles multiplied by the localized fraction
floc=0.21, hence describing the localized part. Adding the theoretically
determined diffusive parts at various delays, we obtain the green profiles,
which reproduce well the experimental profiles.

introduce into the calculation of floc a heuristic energy shift 1Eheur
between the energy functionals fi(E) and P(r|E), and we found
that a relative shift of the form 1Eheur = 3.35V 2

R/ER (for example,
1Eheur/h∼225Hz forVR/h=680Hz) leads to a fair agreementwith
the experimental results (Fig. 3). Note that1Eheur is approximately
twice as large as Ec−VR and the width of the energy distribution
1Efi . It thus strongly affects the value of floc.

The calculation of the diffusion coefficients involves the energy
components with E > Ec. For consistency, we use the same energy
shift as introduced in the calculation of the localized fraction, that
is, we write 〈Du

∗
〉=

∫
+∞

Ec
dE fi(E−1Eheur) û·D∗(E)·û, where û is the

unit vector pointing along the u∈ {y,z} axis. As shown in Fig. 4, we
then find a fair agreement between the results of this calculation and
the experimental data. In particular, the anisotropy of the diffusion
tensor is reproduced well. Note that the theoretical calculations do
not involve any free parameter, apart from the heuristic energy
shift discussed above.

Figure 5 shows the comparison between the theoretical and
experimental profiles, at various delays, in the case VR/h= 680Hz.
The theoretical profiles represent equation (2), where Di(r,E)
and P(r,t |E) are calculated as explained above. These theoretical
profiles are composed of a localized part (replica of the initial profile
multiplied by the calculated localized fraction; red line), plus an
evolving diffusive part (the green line is the sum of the two parts).
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The fair agreement with experimental profiles at various delays
shows the consistency of our theoretical analysis (including the
heuristic energy shift) with the experimental observations.

This theoretical description of our experimental situation allows
us to interpret the behaviour of floc (Fig. 3) and 〈Du

〉 (Fig. 4) as
resulting from the competition of two effects when VR increases.
On the one hand, for each energy component, the incoherent
(Boltzmann)mean free path lB(E), and thus the diffusion coefficient
Du
∗
(E), decrease. According to the (on-shell) Ioffe–Regel criterion

for localization32, kE lB(E) ∼< 1 (where kE =
√
2mE/h̄ is the typical

particle wave vector at energy E), the mobility edge Ec then
increases, so that floc increases if the atom energy distribution is
unchanged. This effect dominates for weak disorder (VR ∼

<400Hz).
On the other hand, the atom energy distribution width and the
heuristic shift increase with VR, so as to populate increasingly the
diffusive component. The two effects counterbalance each other
and the localized fraction reaches a maximum, while the average
diffusion coefficients reach almost constant values.

Discussion and outlook
It is natural to ask whether our observation of a localized
component can be interpreted as 3DAL, andwhether the separation
between the localized and diffusive components corresponds to
the mobility edge. Recall that our observations are incompatible
with classical trapping, owing to the very low value of the
percolation threshold, or with quantum trapping, because our
disorder does not support bound states. Therefore, we know of
no other explanation than AL for our observations. Moreover,
the self-consistent theory of AL applied to the exact experimental
situation yields good quantitative agreement with the experimental
results, provided we use the energy distribution of the atoms, which
is strongly modified by the sudden application of the disorder, and
displace it by a heuristic shift. The comparison is, however, too
sensitive to uncertainties in the experimental parameters and to
approximations in the theory to be considered fully quantitative.
Such a definitive comparison would be of utmost interest, the
experiment then being a test-bed for theories of AL, and several
future advances towards that goal can be envisaged.

On the theoretical side, it will be important to clarify the status of
the heuristic energy shift. On one hand, its simple form (∝V 2

R ) sug-
gests that it may be partially due to some disregarded term at Born
first order, for instance the shift of energy states that is not taken into
account in the on-shell approximation of the self-consistent theory
of AL, but which might be significant31,33. On the other hand, the
above form of the shift may be too simple, as suggested by the dis-
crepancywith experimental data obtained at the highest values ofVR
in Fig. 3. The search for a more elaborate form may lead to a better
understanding of the localization phenomenonwehave observed.

On the experimental side, it would be interesting to be able to
release, in the disordered potential, a sample of atomswith a narrow
energy distribution, controlled at will. It would then be possible to
explore the localization transition, in particular tomeasure the exact
value of the mobility edge Ec, and to study the critical behaviour,
permitting a comparison with existing theoretical treatments
and hopefully suggesting routes for theoretical improvements.
Beyond such developments on AL of non-interacting atoms, future
experiments will include the addition of controlled interactions
between atoms, because the effect of interactions on AL is an open
problem of great interest, in particular in 3D (refs 4,24).

Note added in proof. During the preparation of this manuscript,
we were made aware of a related work, reporting localization of
fermions in a speckle potential34.

Methods
BEC and magnetic levitation. The initial BEC contains several 104 atoms of 87Rb
in the |F = 2,mF =−2〉 ground state, in thermal equilibrium with about the same

number of uncondensed atoms. It is created in a shallow quasi-isotropic Gaussian
optical trap of trapping frequencies ω/2π ∼ 5Hz. The initial chemical potential
µin and temperature are determined by monitoring the free expansion of the
atomic cloud in the presence of the suspending potential (realized by the magnetic
field gradient). The maximum velocity vmax ∼ 0.5mm s−1 in the expanding BEC
corresponds to an initial chemical potential of µin = 3mv2max/4' 40Hz×h. The
velocity distribution of the thermal component has a rms width of ∼ 0.3mm s−1,
that is, corresponding to a temperature of T ∼ 1 nK (kBT/h∼ 20Hz, where kB is
the Boltzmann constant).

The suspending potential has a repulsive and isotropic component of the form
−mω2r2/2, with ω' 1.8 s−1. The weak expelling force resulting from this potential
is responsible for spatially inhomogeneous losses that play a role only when the ex-
pansion is large (weak or null disorder).When the expansion is small enough (strong
disorder, corresponding to the points atVR/h≥400Hz in Figs 2–5), the inhomoge-
neous losses are negligible compared with the observed homogeneous losses, char-
acterized by an inverse decay time constant of∼0.14 s−1. In the quantitative analysis,
we compensate the losses by rescaling our data to a fixed total number of atoms.

Observation of the atomic profiles. We use a high-sensitivity ElectronMultiplying
Charge Coupled Device (EMCCD) camera to image, along the x axis, the
fluorescence obtained when applying, for 50 µs, a saturating resonant probe on
the atomic cloud, at a chosen time t . The overall transverse resolution is 15 µm
(full-width at half-maximum) in the y–z plane, resulting from both the finite
resolution of the imaging system and a numerical sliding average. The obtained
column density profile is averaged over three to five recordings to increase the
signal-to-noise ratio.

3Dspeckledisorder andclassical percolation threshold. To create a homogeneous
3D disorder with small correlation lengths along all directions of space, we cross two
coherent orthogonal speckle fields with a width of 2.4mm (at 1/e2), large compared
with the extension of the atomic cloud. The laser is significantly blue-detuned
(wavelength of 532 nm as compared to the 87Rb resonance wavelength of 780 nm),
so that the disordered potential is repulsive, and spontaneous emission is negligible.
The two crossed speckle fields have the same polarization (along the y axis), yielding
a Gaussian random amplitude distribution28,29, hence the exponential distribution
quoted in the text for the disordered potential.

We have numerically evaluated the percolation threshold Ep of our 3D
speckle potential, that is, the energy such that all classical particles with energy
E < Ep are trapped in finite-size allowed regions. Using various values of the
grid step, the numerical calculations provide an upper bound for the percolation
threshold, Ep ≤ 4(1)×10−3VR. Above Ep, the fraction of classical trapping regions
is found to vanish for E ≥ 8(1)×10−3 VR. Using the energy distribution fi(E)
calculated numerically, with or without the heuristic energy shift, we find that
the fraction of classically trapped particles is negligible (�1%). This is a major
advantage of using two coherent crossed speckles, rather than two speckles with
orthogonal polarizations, or two incoherent speckles, for which the field amplitude
distribution would not be Gaussian. In the case of perpendicularly polarized
speckles, the numerical calculation indeed yields a much larger percolation
threshold Ep ' 0.18(1)VR.

Probability of quantum transport. The function P(r,t |E) is calculated using
the on-shell self-consistent theory27,30. The incoherent (Boltzmann) diffusion
tensor is first calculated using microscopic quantum transport theory applied
to our 3D anisotropic speckle potential. The quantum interference terms are
then incorporated in the form of the Cooperon and Hikami contributions. This
provides an equation for the dynamic, quantum-corrected diffusion tensor,
D∗(E,�). Solving the latter self-consistently in the long time limit (that is, the low
frequency limit�→ 0) with an appropriate short-distance cut-off17,27,31, we obtain
themobility edgeEc and explicit expressions forP(r,t |E). In theAL regime (E<Ec),

P(r|E)=
exp

(
−

√
r ·L−2loc (E) ·r

)
4πdet{Lloc(E)}

√
r ·L−2loc (E) ·r

(3)

is a static, anisotropic, exponentially localized function, characterized by the
localization tensor Lloc(E). In the diffusive regime (E>Ec),

P(r,t |E)=
exp

(
−r ·D−1

∗
(E) ·r/4t

)√
(4π t )3det{D∗(E)}

(4)

is a time-dependent, anisotropic, Gaussian function, characterized by the
self-consistent diffusion tensorD∗(E).

Energy distribution. When the initial chemical potential of the BEC (µin)
and the thermal energy (kBT ) are smaller than the disorder parameters,
the energy distribution can be approximated by fi(E)' A(k= 0,E), where
A(k,E)= 〈k|δ(E−H )|k〉 is the spectral function of the disordered medium,
with H =−h̄2∇2/2m+V (r) the non-interacting Hamiltonian associated with a
realization of the disordered potentialV (r). To calculateA(k=0,E), we decompose
the operator δ(E−H ) onto the energy eigenbasis, as obtained by direct numerical
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diagonalization of the Hamiltonian H . The numerical results are obtained in
a box of linear length ∼15λ and of grid step ∼0.2λ (λ= 532 nm is the laser
wavelength). The disorder average is performed over 100 realizations of V (r) using
the parameters of the 3D speckle potential used in the experiments.
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